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Abstract. MPI (the Message Passing Interface) continues to be the
dominant programming model for parallel machines of all sizes, from
small Linux clusters to the largest parallel supercomputers such as IBM
Blue Gene/L and Cray XT3. Although the MPI standard was released
more than 10 years ago and a number of implementations of MPI are
available from both vendors and research groups, MPI implementations
still need improvement in many areas. In this paper, we discuss several
such areas, including performance, scalability, fault tolerance, support
for debugging and verification, topology awareness, collective commu-
nication, derived datatypes, and parallel I/O. We also present results
from experiments with several MPI implementations (MPICH2, Open
MPI, Sun, IBM) on a number of platforms (Linux clusters, Sun and
IBM SMPs) that demonstrate the need for performance improvement in
one-sided communication and support for multithreaded programs.

1 Introduction

MPI (the Message Passing Interface) is a widely used paradigm for parallel pro-
gramming. It is used across the entire spectrum of parallel machines—from small
Linux clusters to the largest parallel machines in the world such as IBM Blue
Gene/L and Cray XT3. The MPI standard has existed for a long time—MPI-1
was released in 1994 and MPI-2 in 1997—and a number of MPI implementations
are available. Free, portable implementations include MPICH, MPICH2, MVA-
PICH, MVAPICH2, LAM, and Open MPI. In addition, all computer-system and
network-hardware vendors (such as IBM, Cray, Sun, HP, SGI, Intel, Microsoft,
NEC, Hitachi, Fujitsu, Myricom, Quadrics, Mellanox, and QLogic) provide im-
plementations of MPI. (Many of the vendor implementations are derived from
the public-domain implementations.) Although MPI implementations have ma-
tured over the years, improvements are still needed in a number of areas. It is
not sufficient just to provide the lowest possible ping-pong latency and high-
est possible large-message bandwidth between two processes. Users expect good
performance across all aspects of the MPI standard.

In this paper, we discuss several areas in which MPI implementations still
need improvement. These include performance, scalability, fault tolerance, sup-
port for debugging and verification, topology awareness, collective communica-
tion, derived datatypes, parallel I/O, one-sided communication, and support for



multithreaded programs. For the last two areas, we also present results from ex-
periments with several MPI implementations (MPICH2, Open MPI, Sun, IBM)
on a number of platforms (Linux clusters, Sun and IBM SMPs) that demonstrate
the need for performance improvements.

2 Areas Needing Improvement in MPI Implementations

Below we discuss in broad terms several areas in which better support is needed
from MPI implementations. It is not a comprehensive list, but it covers most of
the important topics.

2.1 Basic Performance

The holy grail of message-passing performance is to achieve sub-microsecond la-
tency for short messages. That goal has already been achieved on shared-memory
machines [4] but not yet on distributed-memory systems. In addition to achiev-
ing low latency and high bandwidth on ping-pong benchmarks, it is essential
to deliver good performance across the entire range of message sizes, avoiding
sharp jumps in between. However, this is not the case in many MPI implemen-
tations that use a different protocol for short and long messages (eager versus
rendezvous delivery) to minimize the need for internal buffering. An example
in shown in Figure 1: On the IBM Blue Gene/L, a large jump occurs around
1024 bytes because of the transition from eager to rendezvous protocol. Smooth-
ing out such performance jumps is a difficult challenge because of the tradeoffs
between performance and resource consumption.

Another basic performance requirement is that a user should be able to
achieve better (or equal) performance by using a single MPI function than
by using a combination of other MPI functions that can implement the same
functionality [29]. This requirement is not met in some cases. For example, in
Figure 1, a user with a 1500-byte message will achieve better performance by
sending two 750-byte messages. More such examples can be found in [29].

2.2 Scalability

MPI implementers must bear in mind that the number of processes in an MPI
application may no longer be limited to a few hundred or a few thousand. Ma-
chines with much larger numbers of processors already exist. For example, the
IBM Blue Gene/L at Lawrence Livermore National Laboratory has 131,072
processors. Larger systems are expected in the near future. As a result, MPI
implementations must pay close attention to aspects of their code that grow
linearly with the number of processors. Such aspects include the size of inter-
nal data structures, the number of connections established during MPI Init,
and the complexities of algorithms used anywhere in the implementation. Con-
necting all processes to each other in MPI Init is no longer an option. If the
underlying network requires connections, they must be set up only if and when
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Fig. 1. Measured performance of short messages on IBM Blue Gene/L. Note the large
jump around 1024 bytes; this is the transition from eager to rendezvous protocol in the
MPI implementation.

needed, for example, when a process first tries to communicate with another pro-
cess (MPICH2 already does this). Similarly, connections may need to be closed
dynamically if they remain idle for a long time; and collective-communication
algorithms, including all-to-all, may need to limit the number of connections.

2.3 Fault Tolerance

Closely tied to scalability is the need for increased tolerance to failure. As systems
get larger, the probability of failure of components is larger. MPI implementa-
tions must improve their ability to handle failures, such as broken connections
and dead processes, to the extent possible. A number of research efforts in fault-
tolerant MPI implementation exist [2, 7, 13]. However, production MPI imple-
mentations need to improve their support for fault tolerance. In addition, fault
tolerance often comes at a cost, and a careful balance must be struck between
performance and fault tolerance.

2.4 Support for Debugging and Verification

MPI applications can be difficult to write and equally difficult to debug. To help
application programmers, MPI implementations must provide better support
for tools that help with debugging and verification. For example, MPI imple-
mentations must integrate better with parallel debuggers (e.g., TotalView) [6,
9]. Auxiliary tools that help in debugging are also useful. An example is the
collchk library [8] provided with MPICH2 that can check for inconsistencies in



parameters passed to collective functions on different processes, such as the root
for an MPI Bcast. In a large and complex application with many MPI functions,
collchk has helped find bugs that would otherwise have been very difficult to
catch. A similar tool is described in [31]. Other tools also exist for checking pro-
gram correctness, such as MARMOT [16], Umpire [32], and Intel Trace Analyzer
and Collector [12], but more work is needed in this area.

Parallel programs are also prone to suffer from deadlocks and race conditions
that may remain undetected for a long time because they are timing depen-
dent [17]. For example, the byte-range locking algorithm proposed in [27] has a
race condition that results in deadlock. It was discovered only a year later with
the help of formal-verification methods [18]. Easy-to-use tools that use formal
verification would be invaluable.

2.5 Virtual-to-Physical Topology Mapping

Today’s large parallel machines, such as IBM Blue Gene/L and Cray XT3, have
nodes arranged in a 3D torus topology. On such machines, it is more efficient to
have MPI processes mapped on the nodes in a way that results in the major-
ity of the communication taking place between nearest neighbors in the torus.
MPI defines process-topology functions that allow users to create virtual process
topologies and organize their communication among nearest neighbors on such
topologies. However, the MPI implementation must efficiently map the virtual
topology onto the physical processor layout such that nearest neighbors in the
virtual topology are also nearest neighbors in the physical topology. This effi-
cient mapping is often lacking in MPI implementations and must be provided.
Applications may also need MPI COMM WORLD to be mapped appropriately on the
machine.

2.6 Derived Datatypes

Derived datatypes in MPI allow users to specify noncontiguous memory layouts
and thereby communicate noncontiguous data with a single function call. They
are intended to provide higher performance than having the user pack all the
data contiguously before calling MPI. However, MPI implementations have his-
torically performed very poorly with derived datatypes, to the extent that users
don’t even think about using them. This situation defeats the purpose of having
derived datatypes in the standard. Although some research efforts have opti-
mized the processing of derived datatypes [21, 30], their performance still often
lags behind that of manual packing. One promising effort demonstrated higher
performance than user packing by exploiting knowledge of the memory archi-
tecture of the machine and doing memory copies efficiently [5]. However, this
work is yet not incorporated in the official release of MPICH2. More research,
development, and incorporation into widely used MPI implementations clearly
is needed for derived datatypes.



2.7 Collective Communication

MPI collective communication functions, such as broadcast and reduce, play a
big role in helping applications achieve good performance. Although a lot of re-
search has been done on collective communication algorithms [1, 3, 28] and some
implementations have incorporated optimized algorithms [19, 26], more work is
still needed in some areas. For example, with the advent of multicore chips,
MPI applications will routinely have multiple processes on a single node con-
nected with multiple processes on other nodes by an interconnection network.
Therefore, collective communication algorithms must be designed to effectively
use such a hierarchical communication topology. Although research has been
done on topology-aware collectives [14, 15, 22], not all production implementa-
tions have incorporated such algorithms yet. Furthermore, optimized algorithms
are needed for the entire set of collectives in MPI, not just a select few.

The best algorithm for a particular collective communication function often
depends on the message size and number of processes. In MPICH2, for example,
the MPI collective functions use multiple algorithms, and one of them is selected
for a specific message size and number of processes [26]. However, the cutoff
points for switching between algorithms are based on measurements performed
some time ago on one platform. They may not be right for other platforms. A
better approach is needed that determines the right cutoff points for the specific
machine being used. Dynamic tuning of algorithms may also be needed.

2.8 Parallel I/O

MPI-2 includes an interface for parallel file I/O, commonly referred to as MPI-
IO. The most commonly used implementation of MPI-IO is ROMIO [20, 24]. To
our knowledge, almost all MPI implementations, except IBM’s MPI for the SP,
use ROMIO as the basis for MPI-IO. Although ROMIO has many optimizations
that improve I/O performance substantially, such as data sieving and collective
I/O [25], more work is needed in improving those algorithms and selecting the
right internal buffer sizes for I/O and the right number of I/O aggregators on
large systems. Applications would also benefit from a production-quality client-
side caching system that can take advantage of the default weak consistency
semantics of MPI-IO. Furthermore, many implementations do not yet support
the portable external32 data format and user-defined data representations that
are part of the MPI standard. These features are needed for standards compliance
and for being able to write files that can be read on any architecture.

In the following sections, we discuss in greater detail two other areas needing
improvement, namely, one-sided communication and support for multithreaded
programs.

3 One-Sided Communication

The MPI-2 standard added one-sided communication operations to MPI. These
operations offer a different programming model from the regular MPI-1 point-



to-point operations: A process can directly write to or read from the memory
of a remote process via put and get operations. A key feature of MPI one-sided
communication is that data transfer and synchronization are separated. This
feature allows multiple transfers to use a single synchronization operation, thus
reducing the total overhead. MPI supports three synchronization methods: fence
(collective synchronization), post-start-complete-wait (only communicating pro-
cesses synchronize), and passive target (only the origin process calls lock-unlock
functions).

To test how MPI implementations perform for one-sided communication, we
wrote a benchmark that mimics the common “halo exchange” (or ghost-cell
exchange) operation in applications that approximate the solution to partial dif-
ferential equations. The code for this communication pattern, using MPI point-
to-point communication, is as follows.

for (j=0; j<n_partners; j++) {
MPI_Irecv( rbuffer[j], len, MPI_BYTE, partners[j], 0,

MPI_COMM_WORLD, &req[j] );
MPI_Isend( sbuffer[j], len, MPI_BYTE, partners[j], 0,

MPI_COMM_WORLD, &req[n_partners+j] );
}
MPI_Waitall( 2*n_partners, req, MPI_STATUSES_IGNORE );

We wrote a number of versions of this benchmark with one-sided communication
and using all three synchronization mechanisms. We ran the benchmark on a Sun
Fire SMP at the University of Aachen and an IBM p655+ SMP at the San Diego
Supercomputer Center using the native vendor MPI implementations (Sun and
IBM).

Figure 2 shows a subset of the results on the Sun and IBM machines. The
results on the Sun machine indicate that it is possible to get good performance
with one-sided communication; in fact, on this system the performance with
lock-unlock synchronization is better than with point-to-point communication.
On the other hand, the IBM system performs very poorly for one-sided commu-
nication. With eight processes on an eight-node SMP, the one-sided communica-
tion performance was on the order of forty times slower than the point-to-point
performance (data not shown). With seven processes on the same eight-node
SMP, the one-sided communication performance is still poor (as shown in Fig-
ure 2) but an order of magnitude faster than with eight processes. The significant
change in performance between eight and seven processes suggests that a thread
is used for implementing the one-sided communication operations and that the
implementation is not prepared to handle the case where there are more threads
than processors. The results on the IBM machine demonstrate that efforts are
needed to improve the performance of MPI one-sided communication.

Additional results for other MPI implementations and platforms can be found
in [11].



Fig. 2. Performance of one-sided communication for halo exchange on Sun Fire with 16
processes (top) and IBM p655+ with 7 processes (bottom). putall is the fence version
with all assert options, putpscwalloc is the post-start-complete-wait synchronization
with MPI Alloc mem, putlockshared is passive target with shared locks, and putlock-
sharednb omits the barrier that is necessary to ensure completion at the target.



4 Efficient Support for MPI THREAD MULTIPLE

MPI-2 allows users to write multithreaded MPI programs and defines the interac-
tion between MPI and threads. MPI implementations that support the highest
level of thread safety for user programs, MPI THREAD MULTIPLE, are becoming
widely available. Thread safety does not come for free, however, because the
implementation must protect certain data structures or parts of the code with
mutexes or critical sections. Developing a thread-safe MPI implementation is
a fairly complex task, and the implementers must make several design choices,
both for correctness and for performance [10]. To simplify the task, implemen-
tations often focus on correctness first and performance later (if at all). As a
result, even though an MPI implementation may support multithreading, its
performance may be far from optimized.

To determine how current implementations perform, we ran tests that mea-
sure the bandwidth and latency obtained when multiple threads of a process
communicate with multiple threads of another process compared with multiple
processes instead of threads (see Figure 3). We ran the tests on the Sun Fire and
IBM p655+ SMPs and on a Linux cluster at Argonne National Laboratory. The
cluster has nodes with two dual-core AMD Opterons and Gigabit Ethernet as
the interconnect. We used the native vendor MPI implementations on the Sun
and IBM machines and two implementations on the Linux cluster: MPICH2 and
Open MPI.
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Fig. 3. Communication test when using multiple threads (left) versus multiple pro-
cesses (right).

The first test measures the cumulative bandwidth obtained and demonstrates
how much thread locks affect the cumulative bandwidth; ideally, the multipro-
cess and multithreaded cases should perform similarly. Figure 4 shows the re-
sults. On the Linux cluster, the tests were run on two nodes, with all commu-
nication happening across nodes. We ran two cases: one where there were as
many processes/threads as the number of processors on a node (four) and one
where there were eight processes/threads running on four processors. Both cases
show no measurable difference in bandwidth between threads and processes with
MPICH2. With Open MPI, there is a decline in bandwidth with threads in the
oversubscribed case. On the Sun and IBM SMPs, on the other hand, there is
a substantial decline (more than 50% in some cases) in the bandwidth when
threads were used instead of processes.
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Fig. 4. Concurrent bandwidth test on Linux cluster (left) and Sun and IBM SMPs
(right).

We also ran a version of the test that measures the time (latency) for individ-
ual short messages instead of concurrent bandwidth for large messages. Figure 5
shows the results. On the Linux cluster with MPICH2, there is a 20 µs overhead
in latency when using concurrent threads instead of processes. With Open MPI,
the overhead is about 30 µs. With Sun and IBM MPI, the latency with threads
is about 10 times the latency with processes.

The overhead of threads is much more noticeable on the shared-memory
machines because the overall message-passing performance on those machines
is high (very low latency and very high bandwidth). Minimizing the overhead
of thread-related locking in such environments is a difficult problem, and more
research is needed in this area.

Additional results for several other tests can be found in [23].

 60

 70

 80

 90

 100

 110

 120

 130

 140

 150

 0  200  400  600  800  1000

T
im

e
 (

m
ic

ro
se

c.
)

Size (bytes)

MPICH2 4P-4P
MPICH2 4T-4T

Open MPI 4P-4P
Open MPI 4T-4T

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0  200  400  600  800  1000

T
im

e
 (

m
ic

ro
se

c.
)

Size (bytes)

Sun MPI 4P-4P
Sun MPI 4T-4T
IBM MPI 4P-4P
IBM MPI 4T-4T

Fig. 5. Concurrent latency test on Linux cluster (left) and Sun and IBM SMPs (right).



5 Summary

Although the MPI standard has existed for a long time and MPI implementa-
tions have matured over the years, many areas remain in which MPI implemen-
tations still need improvement. Some of these improvements are necessitated
by new developments in parallel systems, such as very large scale (more than
100,000 processors) and the advent of multicore chips. Others are just hard topics
that need more work. Special efforts are needed in the areas of scalability, fault
tolerance, one-sided communication, support for multithreading, and topology
awareness. Continued research in these areas and incorporation of research re-
sults into production implementations will enable users to take full advantage of
the enormous power of the leading supercomputers, which is rapidly approaching
1 petaflop/s.
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